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A new concept of uniform torque is proposed for the dynamic torsional buckling

analysis. A dynamic biaxial moments and torque buckling theory is presented for

analysis in structural dynamics. Second-order effects of the axial force, biaxial moments

and torque are considered. The consistent natural boundary moments and forces are

requirement of the reciprocal theorem and conservation of energy. The exact dynamic

stiffness matrix is obtained using power series expansion. The derivatives of the

analytical dynamic stiffness matrix with respect to different loading and geometric

parameters are derived explicitly for sensitivity and continuation analyses. Generally

distributed axial force can be analyzed without difficulty. It is pointed out that non-

uniform sections may not be handled by power series due to the convergent problem.

Global pictures for all kinds of linear dynamic buckling are given for the first time. The

methodology is based on finite element formulation and therefore it can easily be

extended to analyze structural frames.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The rigid body concept proposed by Yang and Kuo [1] is important in nonlinear structural analysis for reducing a
nonlinear problem to a series of linear problems. The stability of a curved beam can also be adequately analyzed by straight
beam finite elements if the rigid body principle is observed. The initial stresses induced by the internal forces and moments
in a structural member must be accurately determined in each linear step within a nonlinear analysis to ensure
convergence. Stress induced by initial torque (or torsion) has a long history. Ziegler [2] introduced the concept of quasi-
and semi-tangential torque for circular shafts. Argyris et al. [3] generalized it to rectangular sections of unequal principal
moments of area. The interested readers are recommended to find an exhaustive list of references in the topic in [1]. The
linear beam buckling theory has no further advancement since then.

In this paper, a new concept of uniform torque is proposed for the dynamic torsional buckling analysis. A dynamic
biaxial moments and torque buckling theory is presented for analysis in structural dynamics. Second-order effects of the
axial force, biaxial moments and torque are considered. The consistent natural boundary moments and forces are derived
to ensure the symmetry of the dynamic stiffness matrix in fulfilling the requirement of the reciprocal theorem and
conservation of energy. The exact dynamic stiffness matrix is obtained using power series expansion. The derivatives of the
analytical dynamic stiffness matrix with respect to different loading and geometric parameters are derived explicitly by
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means of the Leung theorem for sensitivity and continuation analyses. The buckling torque is defined as the torque that
causes linear instability of the column. A simple engineering application is the prevention of using excessive torque in
spanners.

The paper is organized in 12 sections. After an introduction in Section 1, the semi- and quasi-tangential torque in
torsional buckling analysis is revisited and compared in detail in Section 2. The deficiency of these concepts is discussed
and a new concept of uniform application of the torque over the entire area at the end of the column is introduced. The
shear strain components induced fit well with the classical linear torsion theory. In Section 3, the strain energy stored in
the column due to the initial torque and biaxial moments is given by means of weak formulation [4]. One advantage of the
weak formulation is that nonlinear strain components are avoided. The formulation is much simpler and is less prone to
errors. Matrix multiplications and integrations only are required. The total potential energy is given in Section 4. The
matrix governing equations and the associated natural boundary conditions are derived by variational principle for non-
uniform cross-sections. The equations are then specialized for uniform cross-sections. The governing equations and the
associated boundary conditions are given explicitly in Section 5 and the analytical solutions of the governing equations for
general boundary conditions are obtained using power series method [5–13] in Section 6. The equations and boundary
conditions are then non-dimensionalized with only two structural parameters to define the geometry of the column. These
geometric parameters are the rigidity ratio e¼ EIx=EIy and the torsion-warping ratio K ¼ GJl2=ðr2EIyÞ ¼ GJl2=ðEI$Þ where
r2 ¼ I$=Iy. An additional parameter is also required to handle the rotational inertia g ¼ J=Ar2. These parameters will be
explained in detail in Section 6. Explicit formulae are given for the displacement functions which are the analytical
solutions of the governing set of ordinary differential equations with unknown integration constants to be determined by
the displacement boundary conditions. Once these integration constants are found in terms of the displacement boundary
conditions, one obtains the analytical shape functions. The dynamic stiffness matrix can then be formed either by the finite
element method or the force method. The force method will be formulated in detail. Section 7 is devoted to the formulation
of non-uniformity along the column length. It is found that the power series method is not suitable for non-uniform cross-
section due to convergence problem. As the resulting problem is nonlinear with respect to the eigenvalue, solution
methods based on Newtonian iteration are inevitable. In order to do so, the partial derivatives of the stiffness matrix with
respect to the loading parameters ðo2; P; L;M;NÞ to give the exact mass matrix, axial stability matrix, torque stability
matrix and biaxial moment stability matrix, respectively, are required. These matrices can be obtained explicitly by an
extension of the Leung theorem [14,15] in Section 8 and the matrices are given in Section 9. The initial approximate natural
frequencies without loading can be obtained by the solutions of a linear eigenvalue problem. These initial approximations
can be improved by inverse iteration or subspace iteration for cluster eigenvalues. The resulting multi-parameter
eigenvalue problem to determine the multi-buckling loads is discussed in Section 10. Extensive numerical examples are
given in Section 11 for a thin walled column and a two-section column. The resulting buckling torques for various theories
are compared and it is found that the semi-tangential torque over-estimates the buckling torque and the quasi-tangential
torque under-estimates it to large extent. Three-dimensional interactive buckling surfaces are given and the various
buckling phenomena are discussed. The paper is concluded in Section 12 with some remarks.
2. Semi- and quasi-tangential torque

Fig. 1 shows a torque L about the neutral axis z applying at the end of a cantilever column. Classically, there are two
ways to apply the torque. One is quasi-tangential when a fictitious rigid rod is welded along the x- or y-axis and a pair of
equal and opposite forces is applied at the two ends of the rod to produce the resultant torque as shown in Fig. 2(a).

The other is semi-tangential when two fictitious rigid rods are welded orthogonally along the x- and y-axis and two
pairs of equal and opposite forces are applied at the four ends of the rods to produce the resultant torque as shown in
Fig. 2(b). The quasi-tangential torque induces either shear stress (i) t0

zx ¼�yL=Ix and t0
zy ¼ 0 or (ii) t0

zy ¼ xL=Iy and t0
zx ¼ 0

depending on the direction of the fictitious rigid rod, all other stress components are zero. Here, Ix ¼
R

y2 dA and
Iy ¼

R
x2 dA are the principal moments of cross-sectional area A. In both case, static equilibrium L¼

R
ðxt0

zy�yt0
zxÞdA is
x, u 

y, v 

z

l
L

Fig. 1. A cantilever subject to an applied torque.
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Fig. 2. Semi- and quasi-tangential torque (a) Quasi-tangential torque I & II; (b) Semi-tangential torque; (c) uniform torque.
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satisfied. The shear strains produced are either (i) g0
zx ¼�yL=GIx and g0

zy ¼ 0 or (ii) g0
zy ¼ xL=GIy and g0

zx ¼ 0, for shear modulus
G. The semi-tangential torque induces shear stress components t0

zx ¼�yL=2Ix and t0
zy ¼ xL=2Iy with the corresponding shear

strains g0
zx ¼�yL=2GIx and g0

zy ¼ xL=2GIy. Static equilibrium L¼
R
ðxt0

zy�yt0
zxÞdA is also satisfied. The shear flow strength,

which is defined as the magnitude of shear stress per unit distance from the centroid per unit applied torque, is given by
ð1=Ix;0Þ or ð0;1=IyÞ for quasi-tangential torque and by ð1=2Ix;1=2IyÞ for semi-tangential torque. Note that, in both cases, the
shear flow strength is non-isotropic that is direction dependent. In real life, it is difficult to determine how much the torque
is applied in which direction. Also, it is difficult to define the induced shear stress in an oblique direction, say an arbitrary
angle to the x-axis when the torque is either quasi- or semi-tangential. Since these torques are self-equilibrating, the stress
distribution far away from the end is not affected according to the Saint Venant principle.

An alternative way is to weld a fictitious plate on the whole cross-sectional area at the end of the cantilever and apply
the torque uniformly over the entire surface so that t0

zy ¼ xL=J0 and t0
zx ¼�yL=J0 where the polar moment of area J0 ¼ Ixþ Iy.

The shear flow strength ð1=J0;1=J0Þ is uniform in all directions, i.e., isotropic. For solid sections and closed thin walled
sections, the polar moment of area is approximately equal to the torsional constant J. The shear strains thus produced are
g0

zy ¼ xL=GJ0 and g0
zx ¼�yL=GJ0 which fit in well with the classical theory that the shear strain of a solid section is

proportional to the distance from the centroid alone no matter what the direction is. Now, the shear strain is g0 ¼ rL=GJ0 at
a point of distance r from the centroid with no preference of direction. We shall call it the uniform torque, as shown in
Fig. 2(c). For easy comparison to the quasi- and semi-tangential torques, the uniform torque is hypothetically drawn on the
left of Fig. 2(c) as forces applying at the four ends of two fictitious rods. Physically, the uniform torque applies on the whole
cross-section in all directions uniformly as demonstrated on the right of Fig. 2(c). The non-vanishing initial shear stresses
satisfy the identity L¼

R
ðxt0

zy�yt0
zxÞdA¼ ððIxþ IyÞ=J0ÞL.

We shall study the strain energy contained in the column due to the applied torque by various ways of application. Let
the displacement vector at a point (x,y) away from the neutral axis be

u¼

ux

uy

uz

8><
>:

9>=
>;¼

w�xu0�yv0

u�yy
v0 þxy

8><
>:

9>=
>;

where u, v, w are the displacement components of the neutral axis and the angle of twist be y. The displacement gradient in
vector form is given by

ru¼

u;x
u;y
u;z

8><
>:

9>=
>;; u;x ¼

qu

qx
¼

�u0

0

y0

8><
>:

9>=
>;; u;y ¼

�v0

�y0

0

8><
>:

9>=
>; and u;z ¼

w0�xu00�yv00

u0�yy0

v0 þxy0

8><
>:

9>=
>; (1)

where a comma subscript denotes partial differentiation. The strain energy due to initial stresses t0
ij for i; j¼ x; y; z are given

by, for example, Washizu [4],

Us ¼
1

2

X
i;j ¼ x;y;z

Z Z
t0

iju
T
;iu;j dA dz (2)
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For quasi-tangential torque, either Usq ¼
R

Lu00v0 dz or Usq ¼
R
�Lu0v00 dz. For semi-tangential torque, Uss ¼

R
1
2L

½u00v0�u0v00�dz. Finally, for uniform torque,

Us ¼

Z
LIy

J0
u00v0�

LIx

J0
u0v00

� �
dz

The share of L is Ix:Iy which becomes 1/2:1/2 only when Ix ¼ Iy. The strain energy Us for a beam element shown in Fig. 1
when subject to initial stress caused by initial torque L was proposed by Zeigler [2] when Ix=Iy where the sharing is
obviously 1/2:1/2. The equal share cannot be generalized to the situation when IxaIy when the torque is uniformly applied.
The significance of the sharing is illustrated in the following torque buckling problem.

Using the principle of minimum total potential energy, the governing equations are:

EIxv
0000

þLu
000

¼ 0; EIyu
0000

�Lv
000

¼ 0

with natural boundary forces

Q v ¼�EIxv
000

�Lu00; Q u ¼�EIyu
000

þLv00

and natural boundary moments

Mv ¼ EIxv00 þ
LIx

J
u0; Mu ¼ EIyu00�

LIy

J
v0

Assign the sharing factor a¼ Iy=J to study its significance so that

Mv ¼ EIxv00 þð1�aÞLu0; Mu ¼ EIyu00�aLv0

The displacement functions for a cantilever satisfying all conditions, i.e., the governing equations, the displacement
conditions at the clamped end x=0 and the natural boundary forces at x= l=1, except the natural boundary moments at
x=l=1 are given by

v¼ ðsin kz�kzÞc1�ð1�cos kzÞc2; u¼ ð1�cos kzÞrc1þðsin kz�kzÞrc2

where

k¼ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EIxEIy

q
and r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIx=EIy

q
Substituting the displacement functions in the natural boundary moments at x= l=1, one has two linear homogeneous
equations for c1 and c2:

Mv

EIx
¼ v00 þð1�aÞ L

EIx
u0 ¼ v00 þð1�aÞ k

r
u0 ¼ 0;

Mw

EIy
¼ u00�a L

EIy
v0 ¼ u00�akrv0 ¼ 0

or

aþð1�aÞcos k �ð1�aÞsin k

�a sin k �1þa�a cos k

" #
c1

c2

( )
¼ 0

The vanishing of the determinant gives the determining equation for k

2að1�aÞþð1�2aþ2a2Þ cos k¼ 0

When a¼ 0:5, one obtains the buckling torque of Ziegler [2]

L¼ pEI

for Ix ¼ Iy and l=1. However, when IzaIy, then L¼ bp
ffiffiffiffiffiffiffiffiffiffiffiffi
EIxEIz

p
, where b¼ 1

pcos�1½2aða�1Þ=ð1�2aþ2a2Þ� as plotted in Fig. 3.
Therefore, the semi-tangential torque always gives the highest buckling torque at b=1 as the sharing factor a is fixed

at 0.5 in both directions. The quasi-tangential torque always gives the lowest bucking torque at b=0.5 as the sharing factor
a is fixed at 0 in one direction. This is confirmed in the numerical example in Section 11.1 that the buckling torque is 0.78
for quasi-tangential torque, 1.56 for semi-tangential torque and 1.35 for uniform torque when the rigidity ratio Ix/Iy=1/1.5.
The large discrepancy is not ignorable (Table 1).

Although there are a number of literatures considering torque buckling, e.g., Eick and Migolet [19] on rotating beams,
Sinha [20,22] on nonlinear rotation and Paolone et al. [21] on non-conservative buckling, their results cannot be directly
compared. As a possible check, we use ANSYSs, a commercial package to analyze the torque buckling of a straight
rectangular cantilever beam by means of its beam element (BEAM 189, ANSYS1), solid elements with 4 points loads to
simulate the semi-tangential torque (SOLID 45, ANSYS2) and solid elements with distributed loads to simulate the uniform
torque (SOLID 45, ANSYS3) for two cases (i) square cross-section b=d=1 and (ii) rectangular cross-section b=1, d=2. The
buckling load parameters l¼ Ll=EI0 are tabulated in Tables 2 and 3 for cases (i) and (ii), respectively. It is observed that all
computations have similar buckling torque results for square cross-section beams but can be quite different for rectangular
cross-section beams. Only results for rectangular cross-section beams need comments. Using existing beam theory, BEAM
189 of ANSYSs produce much lower first buckling torque as expected. ANSYS2 gives lower buckling torque (0.7900) than
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Fig. 3. The buckling torque parameter b against the sharing factor a.

Table 1
Comparison of various torque applications.

QT1 QT2 ST UT

Shear strain x g0
zx ¼�

yL
GIx

g0
zx ¼ 0 g0

zx ¼�
yL

2GIx
g0

zx ¼�
yL
GJ0

Shear strain y g0
zy ¼ 0 g0

zy ¼
xL
GIy

g0
zy ¼

xL
2GIy

g0
zy ¼

xL
GJ0

Shear strain arbitrary angle NA NA NA g0 ¼ rL
GJ0

Table 2
Comparing buckling torques for square cross-section beams.

Present ANSYS1 ANSYS2 ANSYS3
Power series Existing beam theory Torque composed of 4 point loads Torque composed of 121 point loads

Element number 1 100 10�10�100=10,000 10�10�100=10,000

Node number 200 11�11�101=12,221 12,221

DOF 102 1200 36,663 36,663

Mode
1 1.5708 1.5708 1.5285 1.5734

2 1.5708 1.5708 1.5285 1.5734

3 4.7126 4.7124 4.5873 4.7229

4 4.7126 4.7124 4.5873 4.7229

5 7.8548 7.854 5.5983 7.8807

6 7.8548 7.854 7.6512 7.8807

A.Y.T. Leung / Journal of Sound and Vibration 329 (2010) 2218–22402222
the present theory (0.8243) by applying 4 point tangential loads at the free end and ANSYS3 gives higher buckling torque
(0.8833) by applying 121 point shear loads distributed over the cross-section at the free end tangential relative to the edge
directions and proportional to the distance from the center.
3. Strain energy due to initial torque and biaxial moments

We shall apply the classical assumptions of bi-symmetric thin section beams with initial stresses due to biaxial bending
moments M along the x-axis and N along the y-axis, torque L about the z-axis, axial force P acting along the centroid z-axis
which is also the neutral axis and warping moment B.
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Table 3
Comparing buckling torques for rectangular cross-section beams.

Mode Present ANSYS1 ANSYS2 ANSYS3
Existing beam theory Torque composed of 4

point loads

Torque composed of

121 point loads

1 0.8243 1.2566 0.7900 0.8833

2 1.689 1.2566 1.6219 1.5345

3 3.3377 3.7699 2.9731 3.5021

4 4.2024 3.7699 3.1913 4.0538

5 5.8514 6.2832 4.0418 6.0246

6 6.7163 6.2832 5.5696 6.5772

x, u 

y, v 

P

P
L

L

z

l

M N

M

N

Fig. 4. A beam element with initial moments and torque.
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The directions of the initial loadings are shown in Fig. 4 in the absence of the warping moment. The initial axial stress is

s0
z ¼

P

A
�

Mx

Iy
þ

Ny

Ix
þ

B$
I$

(3)

where $ is the principal warping coordinate and I$ ¼
R
$2 dA is the principal warping moment of cross-sectional area A.

The initial stress due to warping moment will be neglected in the subsequent analysis to simplify the presentation. The
initial shear stresses due to the uniform torque L are

t0
zy ¼

xL

J0
and t0

zx ¼�
yL

J0
(4)

The displacement gradient (1) can be put in vector form

ru¼

�1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 �1 0 0 0

0 0 �1 0 0

0 0 0 0 0

0 0 0 �x �y

1 0 �y 0 0

0 1 x 0 0

2
66666666666666664

3
77777777777777775

u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(5)

We do not consider axial deformation in a linear buckling analysis for an inextensible column. The strain energy (2) due to
the initial stresses can be expressed in matrix form [4]

Us ¼
1

2

Z Z
ðruÞT

0 0 tzxI

0 0 tzyI

tzxI tzyI szI

2
64

3
75ðruÞdA dz (6)
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Substituting Eqs. (3) and (4) into Eq. (6) and integrating over the area, one has

Us ¼
1

2

Z
u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T

P 0 M 0 �
IxL

J0

0 P N
IyL

J0
0

M N 0 0 0

0
IyL

J0
0 0 0

�
IxL

J0
0 0 0 0

2
666666666666664

3
777777777777775

u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

dz (7)

The strain energies due to initial stresses with respect to the quasi-tangential and semi-tangential torques are,
respectively,

Usq ¼
1

2

Z
u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T P 0 M 0 0

0 P N L 0

M N 0 0 0

0 L 0 0 0

0 0 0 0 0

2
6666664

3
7777775

u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

dz (7a)

or

Usq ¼
1

2

Z
u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T P 0 M 0 �L

0 P N 0 0

M N 0 0 0

0 0 0 0 0

�L 0 0 0 0

2
6666664

3
7777775

u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

dz (7b)

and

Uss ¼
1

2

Z
u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T
P 0 M 0 �

1

2
L

0 P N
1

2
L 0

M N 0 0 0

0
1

2
L 0 0 0

�
1

2
L 0 0 0 0

2
66666666666664

3
77777777777775

u0

v0

y0

u00

v00

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

dz (7c)

4. Total potential energy

The principle of stationary total potential energy states that the configuration making the total potential energy a
minimum (or stationary) is the equilibrium configuration [4]. The total potential energy V is given by

V ¼U�W (8)

where U is the total strain energy and W is the total work done. In our study, the total strain energy is the sum of linear
strain energy Ue and the strain energy due to initial stresses Us of Eq. (7). Ue is given by

Ue ¼
1

2

Z
ðGJy

02
þEIyu

002þEIxv
002þEI$y

002
Þdz: (9)

where GJ is the torsional rigidity. The total work done due to distributed forces per unit length in the x and y directions fx

and fy and due to distributed torque per unit length mz, respectively, is

W ¼

Z
ðfxuþ fyvþmzyÞdz (10)

If the column is vibration at frequency o, then the amplitude of work done by inertia forces is

W ¼�

Z
ðo2rAu2þo2rAv2þo2rJ0y

2
Þdz
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ðu;v; yÞ are the amplitudes of vibration now. Therefore, the total potential energy is

V ¼
1

2

Z l

0

u

v

y
u0

v0

y0

u00

v00

y00

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

T

�o2rA 0 0 0 0 0 0 0 0

0 �o2rA 0 0 0 0 0 0 0

0 0 �o2rJ0 0 0 0 0 0 0

0 0 0 P 0 M 0 �
IxL

J0
0

0 0 0 0 P N
IyL

J0
0 0

0 0 0 M N GJ 0 0 0

0 0 0 0
IyL

J0
0 EIy 0 0

0 0 0 �
IxL

J0
0 0 0 EIx 0

0 0 0 0 0 0 0 0 EI$

2
6666666666666666666666664

3
7777777777777777777777775

u

v

y
u0

v0

y0

u00

v00

y00

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

dz (11)

In partitioned matrix form [5], one has

V ¼
1

2

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A00 A01 A02

A10 A11 A12

A20 A21 A22

2
64

3
75

r

r0

r00

8><
>:

9>=
>;dz�

Z l

0
RTr dz (12)

where

frg ¼

u

v

y

8><
>:

9>=
>; and R¼

fx

fy

mz

8><
>:

9>=
>;

etc. For equilibrium, dV ¼ 0, where the variation is taken on the unknown displacement r. Therefore,

dV ¼

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A00 A01 A02

A10 A11 A12

A20 A21 A22

2
64

3
75d

r

r0

r00

8><
>:

9>=
>;dz�

Z l

0
RT dr dz

¼

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A00

A10

A20

2
64

3
75drþ

A01

A11

A21

2
64

3
75dr0 þ

A02

A12

A22

2
64

3
75dr00

0
B@

1
CAdz�

Z l

0
RT dr dz¼ 0 (13)

We have to replace dr0 and dr00 by dr using integration by parts, because only dr is independently arbitrary,

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75dr0 dz¼

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75ddr¼

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75drjb�

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75

0
BB@

1
CCA
0

dr dz

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75dr00 dz¼

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75dr0jb�

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
0

drjbþ

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
00

dr dz

where jb denotes evaluation at the boundaries. Substituting into Eq. (13), one has

dV ¼

Z l

0

r

r0

r00

8><
>:

9>=
>;

T A00

A10

A20

2
64

3
75�

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75

0
BB@

1
CCA
0

þ

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
00

�RT

0
BBB@

1
CCCAdr dz

þ

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75�

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
00

BB@
1
CCAdrjbþ

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75dr0jb ¼ 0 (14)
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Since the virtual displacement dr is arbitrary and the right-hand side is constantly zero, the factor in front of dr must be
zero to give the governing equation

r

r0

r00

8><
>:

9>=
>;

T A00

A10

A20

2
64

3
75�

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75

0
BB@

1
CCA
0

þ

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
00

�RT
¼ 0 (15)

The second line of Eq. (14) must also be zero giving the natural boundary conditions

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75�

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
0

0
BB@

1
CCAdrjbþ

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75dr0jb ¼ ST

0 drjbþST
1 dr0jb ¼ 0 (16)

where S0 and S1 are the variationally consistent boundary moments and forces given, respectively, by

ST
0 ¼

r

r0

r00

8><
>:

9>=
>;

T A01

A11

A21

2
64

3
75�

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75

0
BB@

1
CCA
0

; ST
1 ¼

r

r0

r00

8><
>:

9>=
>;

T A02

A12

A22

2
64

3
75 (17)

Eq. (16) states that, at the boundary, (i) either the displacements are prescribed or the boundary forces are balanced by
applied forces and (ii) either the first derivatives of displacements are prescribed or the boundary moments are balanced
by applied moments. When the sectional quantities are constant along the length of the column, one has the variationally
consistent boundary moments and forces

S0 ¼ ½A10þðA11�A20ÞDþðA12�A21ÞD
2�A22D3�r and S1 ¼ ½A20þA21DþA22D2�r (18)

and the governing equation

½A22D4�ðA12�A21ÞD
3þðA20�A11þA02ÞD

2�ðA10�A01ÞDþA00�r¼R (19)

in which D� d=dz.

5. Governing equations and natural boundary conditions

Writing in full, the governing equations are

EIyu
0000

þLv
000

�Pu00 þMy00 ¼ fx�rAo2u; EIxv
0000

�Lu
000

�Pv00 þNy00 ¼ fy�rAo2v

and EI$y
0000

�GJy00 þMu00 þNv00 ¼mz�rJ0o2y (20)

and the boundary moments Mu, Mv, forces Fu, Fv, torque My and bimoment Fy are

Mu ¼ EIyu00 þ
IyL

J0
v0; Fu ¼�EIyu

000

þPu0�Lv00 þMy0 (21)

Mv ¼ EIxv00�
IxL

J0
u0; Fv ¼�EIxv

000

þPv0 þLu00 þNy0 (22)

My ¼ EI$y00; Fy ¼�EI$y
000

þMu0 þNv0 þGJy0 (23)

For quasi-tangential torque, the boundary moments should be replaced by either

Mu ¼ EIyu00 þLv0 and Mv ¼ EIxv00 or Mu ¼ EIyu00 and Mv ¼ EIxv00�Lu0 (24)

depending on which of the orthogonal direction the torque is applied. These are not defined for any other oblique
directions. For semi-tangential torque, the boundary moments should be replaced by

Mu ¼ EIyu00 þ1
2 Lv0 and Mv ¼ EIxv00�1

2Lu0 (25)

Likewise, these are not defined if the fictitious rods are not aligned with the x- and y-axis. We shall not consider the
distributed forces and moment in the subsequent study.

6. Solution by power series

Two of the analytical methods in solving Eqs. (20) with the associated boundary conditions are power series and
matrix exponent. The matrix exponent method can handle equations of constant coefficients only and the
power series is more general. We shall use the power series method here. The power series method has
been used extensively to exactly solving a set of governing ordinary linear differential equations with variable
coefficients. Eisenberger [6] used power series to obtain the exact dynamics stiffness for non-uniform members.
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Leung and coworkers [7–13] published a number of papers on the power series solutions for exact stiffness
matrices.

To reduce the number of variable parameters, non-dimensionalization is advantageous. We can always extract one
group of parameters out of the integration bracket to eliminate one parameter EIy say. We can also scale the twist y, so that
either GJ or EI$ can be eliminated. Here, we normailize EI$. Therefore

U ¼
EIy

2l3

Z 1

0

u0

v0

ry0

u00

v00

ry00

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

T
P 0 M 0 �eL 0

0 P N L 0 0

M N K 0 0 0

0 L 0 1 0 0

�eL 0 0 0 e 0

0 0 0 0 0 1

2
6666666664

3
7777777775

u0

v0

ry0

u00

v00

ry00

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

dz (26)

where, z ¼ z=l, P ¼ Pl2=EIy, L ¼ Ll=EJ0, e¼ EIx=EIy, r2 ¼ EI$=EIy, K ¼ GJl2=ðr2EIyÞ ¼ GJl2=ðEI$Þ, M ¼Ml2=ðrEIyÞ, N ¼Nl2=ðrEIyÞ,
y ¼ ry and a prime denotes differentiation with respect to z. Dynamic parameters are also required to handle the
translational inertia w ¼ rAo2l4=EIy and the rotational inertia g ¼ J=Ar2. We shall drop the over-bars for convenience in the
subsequent study. The non-dimensional governing equations are:

u
0000

þð1þeÞLv
000

�Pu00�My00 ¼ �wu; ev
0000

�ð1þeÞLu
000

�Pv00�Ny00 ¼ �wv and y
0000

�Ky00�Mu00�Nv00 ¼ �gwy (27)

and the boundary moments and forces are:

Mu ¼ u00 þLv0; Fu ¼�u
000

þPu0�ð1þeÞLv00 þMy0 (28)

Mv ¼ ev00�eLu0; Fv ¼�ev
000

þPv0 þð1þeÞLu00 þNy0 (29)

My ¼ y00; Fy ¼�y
000

þMu0 þNv0 þKy0 (30)

or in vector form

M¼

Mu

Mv

My

8><
>:

9>=
>;¼

u00 þLv0

ev00�eLu0

y00

8><
>:

9>=
>; and V¼

Fu

Fv

Fy

8><
>:

9>=
>;¼�

u
000

�Pu0 þð1þeÞLv00�My0

ev
000

�Pv0�ð1þeÞLu00�Ny0

y
000

�Ky0�Mu0�Nv0

8><
>:

9>=
>; (31, 32)

Express the solutions in power series

uðzÞ

vðzÞ

yðzÞ

8><
>:

9>=
>;¼

Xn

i ¼ 0

ukþ1

vkþ1

ykþ1

8><
>:

9>=
>;zk (33)

Substituting in Eqs. (27) and comparing similar terms in zk, one has

uk5
¼ ðwuk1

þMk1k2yk3
�ð1þeÞLk1k2k3vk1

þPk1k2uk3
Þ=ðk1k2k3k4Þ

vk5
¼ ðwvk1

þNk1k2yk3
þð1þeÞLk1k2k3uk1

þPk1k2vk3
Þ=ðek1k2k3k4Þ

yk5
¼ ðgwyk1

þKk1k2yk3
þMk1k2k3uk1

þNk1k2vk3
Þ=ðk1k2k3k4Þ

where

ki ¼ kþ i (34)

It is obvious that uk;vk;yk, k44, can be expressed in terms of the 12 integration constants u1;u2;u3;u4; v1;v2;v3;v4;
y1; y2; y3; y4 for the three ordinary differential equations of order four. Back substituting into Eq. (27), it can be seen that the
residue decays rapidly. The slowest term converges about (4+k) times the previous one. When k is about 10, each
increment increases the number of significant digit by one. Therefore, 50 terms should achieve more than machine
precision in all cases. In case that some coefficients are much bigger than the others, more terms are required. One efficient
way to check the convergence of the series solution is by checking the symmetry of the resulting stiffness matrix discussed
later.

The power series displacement solutions can be written as

rðzÞ ¼

uðzÞ

vðzÞ

yðzÞ

8><
>:

9>=
>;¼ ½v1ðzÞ v2ðzÞ . . . v12ðzÞ�½u1 . . . y4�

T ¼ vðzÞc (35)
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Table 4
The coefficient of the displacement functions.

z9 z8 z7 z6 z5 z4 z3 z2 z1 z0

vT
u ¼

P9
i ¼ 0 vT

uiz
i 0 0.0008 0 �0.0072 0 0.0417 0 0 0 1.0000

0.0001 0 �0.0010 0 0.0083 0 0 0 1.0000 0

�0.0017 0.0075 �0.0007 0.0199 0 �0.0833 0 1.0000 0 0

�0.0000 �0.0000 0.0375 0 �0.2583 0 1.0000 0 0 0

�0.0002 0.0000 0.0019 0 �0.0139 0 0 0 0 0

0.0000 0.0002 0 �0.0023 0 0 0 0 0 0

�0.0013 0.0092 �0.0052 0.0028 0.0278 0 0 0 0 0

0.0031 �0.0137 0.0012 0.1215 0 �0.6250 0 0 0 0

�0.0246 0.1335 �0.0095 0.0400 0 0 0 0 0 0

0.0148 �0.0012 0.0057 0 0 0 0 0 0 0

�0.3289 1.7824 �0.1231 0.5190 �0.0278 0.0833 0 0 0 0

0.5941 �0.0462 0.2224 �0.0139 0.0500 0 0 0 0 0

vT
v ¼

P9
i ¼ 0 vT

viz
i 0.0002 0.0000 �0.0019 0 0.0139 0 0 0 0 0

0.0000 �0.0002 0 0.0023 0 0 0 0 0 0

0.0013 0.0062 0.0052 0.0019 �0.0278 0 0 0 0 0

0.0021 0.0091 0.0008 �0.0810 0 0.4167 0 0 0 0

�0.0000 0.0005 0 �0.0045 0 0.0278 0 0 0 1.0000

0.0001 0 �0.0006 0 0.0056 0 0 0 1.0000 0

0.0017 0.0051 0.0007 0.0127 0 �0.0556 0 1.0000 0 0

�0.0008 0.0000 0.0344 0 �0.2417 0 1.0000 0 0 0

0.0246 0.0891 0.0095 0.0267 0 0 0 0 0 0

0.0099 0.0012 0.0038 0 0 0 0 0 0 0

0.3289 1.1903 0.1231 0.3466 0.0278 0.0556 0 0 0 0

0.3968 0.0462 0.1485 0.0139 0.0333 0 0 0 0 0

vT
y ¼

P9
i ¼ 0 vT

yiz
i 0.0009 0.0046 0.0003 0.0014 0 0 0 0 0 0

0.0005 0.0000 0.0002 0 0 0 0 0 0 0

�0.0017 1.8209 �0.0007 0.5306 0 0.0833 0 0 0 0

0.5941 0.0462 0.2224 0.0139 0.0500 0 0 0 0 0

�0.0009 0.0031 �0.0003 0.0009 0 0 0 0 0 0

0.0003 �0.0000 0.0001 0 0 0 0 0 0 0

0.0017 1.8239 0.0007 0.5315 0 0.0833 0 0 0 0

0.5951 �0.0693 0.2228 �0.0208 0.0500 0 0 0 0 0

0 26.3532 0 7.6800 0 1.2000 0 0 0 1.0000

2.9281 0 1.0971 0 0.2400 0 0 0 1.0000 0

0 351.6656 0 102.4846 0 16.0000 0 1.0000 0 0

117.2219 0 43.9220 0 9.6000 0 1.0000 0 0 0

A.Y.T. Leung / Journal of Sound and Vibration 329 (2010) 2218–22402228
in which

vðzÞ ¼

vuðzÞ

vvðzÞ

vyðzÞ

8><
>:

9>=
>;

is a 3�12 matrix of the computed displacement shape functions given by Eqs. (34) and vector c contains the integration
constants to be determined by the prescribed nodal displacements. The first few terms of matrix vðzÞ are actually identity
matrix corresponding to the integration constants. The explicit form of the displacement functions are listed in Table 4 in
the numerical example section. To get the shape functions from the displacement functions (35), the following
displacement boundary conditions evaluated at z=0 and z=1 are required for the nodal displacement vector q,

qT ¼ ½uð0Þ vð0Þ yð0Þ u0ð0Þ v0ð0Þ y0ð0Þ uð1Þ vð1Þ yð1Þ u0ð1Þ v0ð1Þ y0ð1Þ�

q¼

vð0Þ
v0ð0Þ
vð1Þ
v0ð1Þ

2
66664

3
77775c¼ Cc for C¼

vð0Þ
v0ð0Þ
vð1Þ
v0ð1Þ

2
66664

3
77775 or c¼ C�1q

and the shape functions N are given by

rðzÞ ¼

uðzÞ

vðzÞ

yðzÞ

8><
>:

9>=
>;¼ vðzÞc¼ vðzÞC�1q¼NðzÞq (36)
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where NðzÞ ¼ vðzÞC�1 is the shape function matrix in the finite element sense. The exact stiffness matrix K is given by
substituting Eq. (36) into (31, 32) and evaluating the boundary forces and moments from Eqs. (31, 32)

F¼

�Vð0Þ

�Mð0Þ

Vð1Þ

Mð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼Kq (37)

The negative signs are in consistence with the negative end of the column. It can be shown that the stiffness matrix thus
obtained is symmetrical to fulfill the requirement of the reciprocal theorem. The symmetry is an efficient check on the
convergence of the power series solution in the number of polynomial terms taken. The number of terms should be
increased if the final matrix is not symmetrical. Eq. (37) is the final stiffness equation that can be connected to the stiffness
matrices of other structures using the conditions of equilibrium and compatibility at joints to form the global stiffness
matrix.

7. Non-uniformity

When the cross-sectional area or any of the loadings is non-uniform, one has to solve the non-uniform set of equations
(15) with the associated natural boundary conditions (17). Writing in full, one has

A00rþA01r0 þA02r00�ðA10rÞ0�ðA11r0Þ0�ðA12r00Þ0 þðA20rÞ00 þðA21r0Þ00 þðA22r00Þ00 ¼R (43)

S0 ¼A10rþA11r0 þA12r00�ðA20rÞ0�ðA21r0Þ0�ðA22r00Þ0 (44)

S1 ¼ A20rþA21r0 þA22r00 (45)

To study the convergence of the power series method for non-uniform beam, let us consider a much simpler problem in the
absence of all secondary loads whose governing equation is

ðev00Þ00�wv¼ 0 (46)

where w¼o2rAl4=EI, o is the frequency, rA is mass per unit length, EI is the nominal flexural rigidity and e¼ ð1þ fzÞ3 to
study the effect of non-uniformity due to linear varying depth. The power series solution is

vkþ5 ¼
wvkþ1�f 3kð1þkÞ2ð2þkÞvkþ2�3f 2ð1þkÞ2ð2þkÞ2vkþ3�3f ð1þkÞð2þkÞ2ð3þkÞvkþ4

ð1þkÞð2þkÞð3þkÞð4þkÞ
(47)

That the numerator and denominator equally contain k to the power four poses a serious convergent problem. Back-
substitute into Eq. (46) using 10 terms, the output residue is excessively large and convergence cannot be guaranteed.

8. Extended Leung’s theorem

It is evident that the stiffness matrix K is nonlinearly dependent on the loading parameters ðP; L;M;NÞ and
exact solution methods are not available. For some versions of Newtonian iteration to be discussed later, the partial
derivatives of the stiffness matrix with respect to these parameters are required. It is seen from Eqs. (36) and (37) that the
analytic dynamic stiffness matrix is formed from several matrix products involving matrix inversion; direct matrix
derivatives will be very difficult.

A simple matrix differentiation of the dynamic stiffness can be obtained by using the fact that the exact stiffness is
the condensed finite element matrix after all the internal nodal displacements are accurately eliminated. Let q2

be the external nodal displacements at the two outer most nodes and q1 be all the external nodal displacements

to be eliminated so that q¼
q1

q2

( )
. Consider just one second-order loading parameter, l, say, the finite element

equation is

KðlÞq¼ ½AþlB�q¼ f (48)

where f is the first-order nodal forces. Assuming that the first-order nodal force applies to the outer most nodes only, Eq.
(48) can be partitioned as

K11 K12

K21 K22

" #
q1

q2

( )
¼

A11 A12

A21 A22

" #
þl

B11 B12

B21 B22

" # !
q1

q2

( )
¼

0

f2

( )
(49)

for constant matrices Aij and Bij. From Eq. (48), one has the transformation,

q¼
�K�1

11 K12

I

" #
q2 ¼ TðlÞq2 (50)
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Eq. (48) becomes, after post-multiplying by TT
ðlÞ,

TTKTq2 ¼ ½T
TATþlTTBT�q2 ¼ f2 (51)

or

~KðlÞq2 ¼ ½
~AðlÞþl ~BðlÞ�q2 ¼ f2 (52)

where ~K; ~A; ~B are the condensed matrices. If sufficient number of finite elements is taken, the condensed matrices become
the exact matrices being studied. We are required to prove the Leung theorem [14,15] that

~K 0ðlÞ ¼
q ~KðlÞ
ql
¼ ~BðlÞ (53)

The derivative of the transformation matrix is

T0ðlÞ ¼
q
ql

TðlÞ ¼
q
ql
�K�1

11 K12

I

" #
¼

K�1
11 B11K�1

11 K12�K�1
11 B12

0

" #
(54)

where the derivative of K�1
11 has been obtained using the fact that

K�1
11 K11 ¼ I; ðK�1

11 Þ
0K11þK�1

11 K11
0 ¼ 0 and ðK�1

11 Þ
0 ¼ �K�1

11 K11
0 K�1

11 ¼�K�1
11 B11K�1

11

Therefore,

~K 0ðlÞ ¼
q ~KðlÞ
ql
¼ T0TKTþTTK0TþTTKT0 ¼ TTBT¼ ~BðlÞ

as required because T0TKT¼ 0 and TTKT0 ¼ 0 from Eq. (54). An alternative proof is that

~K ¼K22�K21K�1
11 K12 ¼

�K�1
11 K12

I

" #T
K11 K12

K21 K22

" #
�K�1

11 K12

I

" #
(55)

and

~K 0 ¼K22
0 �K21

0 K�1
11 K12�K21K�1

11 K12
0 þK21K�1

11 K11
0 K�1

11 K12 ¼
�K�1

11 K12

I

" #T
K11
0 K12

0

K21
0 K22

0

" #
�K�1

11 K12

I

" #

¼
�K�1

11 K12

I

" #T
B11 B12

B21 B22

" #
�K�1

11 K12

I

" #
¼ ~B (56)

which is as stated in Eq. (53).
9. Derivatives of the dynamic stiffness matrix

The total strain energy is

U ¼
EIy

2l3

Z 1

0

u0

v0

y0

u00

v00

y00

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

T P 0 M 0 �eL 0

0 P N L 0 0

M N K 0 0 0

0 L 0 1 0 0

�eL 0 0 0 e 0

0 0 0 0 0 1

2
666666664

3
777777775

u0

v0

y0

u00

v00

y00

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

dz

¼
EIy

2l3
qT

Z 1

0

N00ðzÞ

N00ðzÞ

" #T

P 0 M 0 �eL 0

0 P N L 0 0

M N K 0 0 0

0 L 0 1 0 0

�eL 0 0 0 e 0

0 0 0 0 0 1

2
666666664

3
777777775

N00ðzÞ

N00ðzÞ

" #
dzq (57)
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Therefore,

qK

qP
¼K;P ¼

EIy

2l3

Z 1

0

N00ðzÞ

N00ðzÞ

" #T

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775

N00ðzÞ

N00ðzÞ

" #
dz¼

EIy

2l3
C�T

Z 1

0
ðw0Tuvu

0 þw0Tvvv
0 ÞdzC�1 (58)

qK

qL
¼K;L ¼

EIy

2l3

Z 1

0

N0ðzÞ

N00ðzÞ

" #T

0 0 0 0 �e 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

�e 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
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qK
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¼K;N ¼

EIy

2l3
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qK

qw
¼K;w ¼�

EIy

2l3

Z 1

0
NðzÞT

1 0 0

0 1 0

0 0 g

2
64

3
75NðzÞdz�

EIy

2l3
C�T

Z 1

0
ðvT

uvuþvT
vvvþvT

yvyÞdzC�1

where the shape function NðzÞ is given explicitly by Eq. (36) and v in (35).

10. Solution of the eigenvalue problem

The equation to be solved in a dynamic buckling problem is

Kðo2; P; L;M;NÞq¼ 0 (62)

For non-trivial solution, qa0 and det Kðo2; P; L;M;NÞ ¼ 0 gives a relation between ðo2; P; L;M;NÞ when buckling occurs.
If the order of K is large, parametric study is difficult. The inverse iteration method generalized below is an alternative
efficient method for multi-parameter study.

Assuming an initial approximation is found so that

K0ðo2
0; P0; L0;M0;N0Þq0 ¼ 0 (63)

with the normalization condition qT
0q0 ¼ 1. After small parametric increment, a new eigenvalue problem to be solved is

ðK0þDKÞðq0þDqÞ ¼ 0 (64)

where DK¼K;o2 Do2þK;P DPþK;L DLþK;M DMþK;N DN Let us consider the increment of P only. Eq. (64) gives

½K0þDP K;P�fq0þDqg ¼ ½K0þDP K;P�q0þ½K0þDP K;P�Dq¼ 0 (65)

Since K0q0 ¼ 0, therefore DP½K;P�q0þ½K0þDP K;P�Dq¼ 0, or

½K0þDP K;P�Dq¼�DP½K;P�q0 (66)
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This is the inverse iteration scheme. The improved eigenvector is given by q¼ q0þDq and the improved increment is given
by the generalized Rayleigh’s quotient

DP¼
qT½K0þDP K;P �q

qT½K;P �q
(67)

Alternatively, one can make arbitrarily small increments on ðo2; P; L;MÞ but not on N so that DN¼ 0 in the beginning and
find the necessary increment on N to satisfy the eigenvalue problem. Since K0q0 ¼ 0, Eq. (64) gives

ðK0þDKÞðq0þDqÞ ¼DKq0þðK0þDKÞDq¼ 0 (68)

ðK0þDKÞDq¼�DKq0 (69)

Adding ðK0þDKÞq0 on both sides, one has

ðK0þDKÞðq0þDqÞ ¼K0q0 (70)

This is the inverse iteration scheme for q¼ q0þDq. The increment DN is then found from the Rayleigh quotient

DN¼
qTðK0þDKÞq

qTðK;NÞq
(71)

Using either scheme, one can draw the interactive buckling curve or surface in a multi-parametric space. For cluster modes,
the subspace iteration [17,18] should be used.

11. Numerical examples

Consider a column having rectangular thin walled section as shown in Fig. 5.
The dimensions are d1=10 cm, d2=15 cm, h=1 cm, l=50 cm. The cross-sectional area A=50 cm2, the length l=50 cm, the

principal moments of area are Iy=750 cm4 and Ix=1125 cm4 and the warping moment of area is I$ ¼ 937:5 cm6. Young’s
modulus E=2.1�107 N/cm2, Shear Modulus G=8.4�106 N/cm2, torsional constant=polar moment of area= J=1800 cm4.
The rigidity ratio e=1.5; K ¼ GJl2=ðEIwÞ ¼ 192; r2 ¼ I$=Iy ¼ 1:25 and g ¼ J=Ar2 ¼ 1800=ð50� 1:25Þ ¼ 28:8. The externally
applied forces and moments are non-dimensionalized according to Eq. (26). We shall compare the buckling loads for
various ways of torque application and give the interactive buckling surfaces for three loading parameters at a time.
Finally, the results for a two-section column are shown.

As a numerical check, let w=1, P=�1, L=1, M=1, N=1; the displacement functions of the first nine degrees are listed in
Table 4.

11.1. Comparison of various ways of torque application

We shall consider the effects of various ways of torque application on the buckling torque. Fig. 6 shows the interactive
dynamic torque buckling curves of various ways of torque application. The heavy dash lines are the results of semi-tangential
torque, the dot lines quasi-tangential torque and the solid lines uniform torque. That P1=2 is used instead of P in the axis is for
more uniform spread of curves. There are two groups of curves for quasi-tangential torque. The inner pair with thick dots is
for (i) t0

zx ¼�yL=Ix and t0
zy ¼ 0 and the outer pair with slim dots is for (ii) t0

zy ¼ xL=Iy and t0
zx ¼ 0. It is observed that the quasi-

tangential torque produces non-monotonic interactive buckling curves and the semi-tangential torque buckles the column in
a catastrophic manner in the absence of compression. Both phenomena are unusual in the first mode of a conservative
buckling problem. The uniform torque does not have any of these problems. The first buckling torque is L=1.35 when it
d1

d2

h

y

x

Fig. 5. A column having rectangular thin-walled section.
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Fig. 7. Higher dynamic buckling N�o modes.
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Fig. 6. Comparison of various ways of torque application.
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applies uniformly. The quasi-tangential torque in both branches gives lower first buckling value L=0.78 and the semi-
tangential torque over-estimates it to L=1.56. We have shown in Section 2 that the buckling semi-tangential torque is always
twice of the buckling quasi-tangential torque. It is verified numerically here. The third mode shown vertically is not affected
by the ways of torque application. We shall consider uniform torque only in the subsequent studies.
11.2. Higher dynamic buckling modes

The power series method is very efficient for obtaining lower buckling modes. It can handle reasonably higher
N�o modes but fails for extremely high modes. An alternative method of Fourier p-elements should be used in the
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later case and for non-uniform sections [16]. The first four N�o interactive modes are plotted in Fig. 7. Since N is
applied along the major principal axis, it has little effect on the first bending mode along the minor principal axis
showing a straight line. There are two branches emanating from the bending mode along the major axis. One
is an asymmetric mode which is softened quickly by the initial moment N and the other is asymmetric mode which
hardened by the initial moment N in the beginning. It is seen that the interactive curves loses the monotonic convexity at
higher modes. Fig. 8 shows the higher interactive dynamic compression modes. The interactive curves keep the monotonic
convexity even at higher modes. The power series method is numerically stable for dynamic compression buckling
problems.
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Fig. 9. Three-dimensional interactive buckling of moments and torque.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

w1/4

P
1/

2

Fig. 8. Higher dynamic buckling P�o modes.
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Fig. 11. Interactive dynamic biaxial moment buckling L=0: (a) top view, (b) 3D view and (c) scaled 3D view.
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11.3. Three-dimensional interactive buckling of moments and torque

Three-dimensional interactive buckling of moments and torque is shown in Fig. 9 for the first three modes and the
projections onto the MN, LN and LM planes are plotted in Fig. 10. The interaction surface of the first mode is convex in all
directions. The second mode curves are also monotonic and convex for lower values of L but the convexity is lost for higher
values. In fact, the second modes seem to be attracted by the first modes when they are near to each other on the same
level of L. The attraction is more obvious if one plots the interaction curves of L, N for level values of M=0:2:50 in Fig. 10. A
cross-over happens at about M=10 and a classical phenomena of avoid crossing can be observed near that value.

11.4. Three-dimensional interactive dynamic buckling of moments and torque

Fig. 11 shows the interactive dynamic biaxial moment buckling in the absence of initial torque L=0. Four modes can be
observed in the three-dimensional view of Fig. 11(b). The interactive surface of the first mode is almost spherical. If one
scales the level curves by the uni-axial moment buckling loads N0 and M0, they will be collapsed into a quarter circle if
view from the top as shown in Fig. 11(c). The first mode is disappeared at w1/4=1.87 which is the first natural vibration
frequency in bending about the minor principal axis of the cantilever. The level curves for the second modes emanate from
the far corner of the MN plane. The curves become longer for higher frequency as the portions that were outside the MN

region move in and are disappeared at w1/4=2.07 which is the first natural vibration frequency in bending about the major
principal axis of the cantilever. The top three level curves in Fig. 11(b) are the second bending mode about the minor
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Fig. 13. Interactive dynamic biaxial moment buckling L=1.5.
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Fig. 12. Interactive dynamic biaxial moment buckling L=0.5.
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Fig. 15. Level curves for dynamic compression–torque buckling: (a) top view, (b) 3D view and (c) scaled 3D view.
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principal axis. The level curve emanated from about N=10 corresponds to the torsion mode. When the uniform torque is
increased, the level curves are presented in Figs. 12–14 for L=0.5, 1.5, 2.0, respectively. For easy explanation, we use solid
lines for the lowest mode, dash lines for the second lowest and dot lines for the third lowest appearing in the figures. The
first mode level curves shrink a little at L=0.5. Some second mode level curves are no longer convex but that of the third
mode are still convex. The level curves for the first mode are completely disappeared at L=1.5 in Fig. 13 as the first torque
buckling mode is at L=1.35. The level curves for the second mode are also completely disappeared at L=1.52 in Fig. 14 as
the second torque buckling mode is at L=1.72.

The first two sets of interactive buckling curves under uniform torque L and compression P for w1/4=0:.1:2 are plotted in
Fig. 15(a) with its top view in Fig. 15(b). Both modes are monotonic and convex as usual. When the level curves are scaled
by the individual buckling loads, two sets of collapsed curves of nearly circular shape are resulted as shown in Fig. 15(c).
11.5. Interactive dynamic buckling of moments and torque when compressed

The first three sets of interactive buckling curves under (i) uni-axial moment M and compression P and (ii) uni-axial
moment N and compression P for w1/4=0:.1:2 are plotted in Figs. 16(b) and 17(b) with their top views in Figs. 16(a) and
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Fig. 16. Level curves for dynamic M moment–torque buckling: (a) top view and (b) 3D view.
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17(a), respectively. The first sets are monotonic and convex as usual. The second sets are rather insensitive to M and N,
respectively. The third sets display some flutter like curves in the PM and PN planes, respectively, at high frequencies.
11.6. Interactive dynamic buckling of a two-section column

Finally, we study the interactive dynamic torque buckling of a two-section column shown in Fig. 18. Section 1 remains
the same as before. For Section 2, the thickness h=0.5 cm and length l=50 cm. All non-dimension parameters remain
unchanged. The stiffness matrix will be reduced by half in value as Iy is halved. After assembling, the stiffness matrix is of
dimension 12. The interactive torque–compression buckling curves are shown in Fig. 19. The dash lines are modes that are
rather insensitive to the apply torque.
12. Conclusion

The existing beam theories for torque buckling have been reviewed and suggestion to improve them is given. The
buckling torques for some cases are compared with ANSYSs. Solution methods using power series are recommended. The
method can provide combine dynamic buckling information when the beam is subject to end moments, end shears, axial
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force and torque. Convergence requirement is discussed. Although single members have been used as examples, as the
formulation is based on finite element, structural frames can be analyzed without difficulties.
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